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Nonlinear lattice model of viscoelastic mode III fracture
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We study the effect of general nonlinear force laws in viscoelastic lattice models of fracture, focusing on the
existence and stability of steady-state mode III cracks. We show that the hysteretic behavior at small driving is
very sensitive to the smoothness of the force law. At large driving, we find a Hopf bifurcation to a straight
crack whose velocity is periodic in time. The frequency of the unstable bifurcating mode depends on the
smoothness of the potential, but is very close to an exact period-doubling instability. Slightly above the onset
of the instability, the system settles into a exactly period-doubled state, presumably connected to the afore-
mentioned bifurcation structure. We explicitly solve for this new state and map out its velocity-driving relation.
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I. INTRODUCTION

The problem of dynamic fracture has received increas
attention in the physics community in the last decade@1#.
The experiments of Fineberget al. @2#, showing interesting
dynamical behavior for large velocity cracks have been at
center of this growing interest. From a theoretical point
view, the singularities at the crack tip associated with c
tinuum treatments of the crack problem make the prob
challenging. The presence of these singularities necessi
a treatment of the crack at the microscopic level, where
continuum treatment and its associated singularities are
applicable. One line of attack on this problem, initiated
Slepyan@3#, has been through the study of lattice models
cracks. These lattice models are simpler than full atomi
simulations@4# in that the connectivity of the atoms is spec
fied from the beginning, and so dislocations are exclude

Much progress has been made in understanding ste
state propagation of cracks in lattice systems@3,5–8#. A key
simplifying assumption underlying much of this progress h
been the assumption of piecewise linear forces between
particles, so that the particles interact with Hookean sprin
which break at some critical extension, reducing the force
zero. With these piecewise linear interactions, the model
mits an analytic solution via the Wiener–Hopf techniqu
This solution has been carried out both for mode I and m
III cracks, for both finite width and infinitely wide system
with and without dissipation.

A general feature of these solutions is that they are pr
lematic at both very small and very large~roughly above 0.7
of the wave speed! velocities. For small dissipation, the so
lutions are inconsistent at small velocities, in that bonds
the crack surface which are assumed to crack at timet50,
say, in fact are seen to crack earlier. For large dissipation
small velocity solutions are consistent, but exhibit a ba
ward ~velocity increasing with decreasing driving! velocity/
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driving curve, indicating the solutions are unstable. Thus
any case, stable solutions are not found for small velocit

At large velocities, the analytic solutions are again inco
sistent, this time due to the breaking of additional bonds
on the crack surface. The analytic methods thus are unab
tell us anything about the dynamics beyond this point.

An additional limitation of the piecewise linear force la
is that it complicates the task of constructing a linear stabi
treatment of the steady-state crack. This is due, of course
the discontinuous nature of the force law. For these reas
we choose in this paper to examine steady-state crack pr
gation in lattice models with arbitrary force-laws. In partic
lar, we study a family of force-laws parametrized bya, such
that for smalla the force-law is smooth and the force-la
goes over to the piecewise linear one in the limit of infin
a. We have previously studied@9# the behavior of arrested
mode III cracks with this family of force-laws, and foun
that the range of drivings for which arrested cracks ex
narrows sharply asa is reduced from infinity. In this pape
we examine moving mode III cracks for varyinga. We find
that the behavior for small velocity is very sensitive toa. For
large velocities, we find that the effect of finitea is to con-
vert the inconsistency to a regular linear instability, here
Hopf type. We show that at some distance into the unsta
regime, the system adopts a new form of steady-state be
ior which breaks the symmetry across the crack surface
has a period-2 structure. We conclude with some obse
tions about the model deep in the unstable regime.

II. MODEL AND GENERAL METHODOLOGY

In this paper, we study a triangular lattice model of mo
III cracking. We take the force exerted at sitexW1 by the
displacement at nearest neighbor sitexW2 , with ~scalar! dis-
placementsu1 ,u2 , respectively to be

f 1,25~u22u1!
11tanh~a~12s1,2~u22u1!!!

11tanh~a!
, ~1!

wherea is a parameter which controls the smoothness of
potential ands561 is positive ifxW2 lies to the left ofxW1 or
©2000 The American Physical Society18-1
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DAVID A. KESSLER AND HERBERT LEVINE PHYSICAL REVIEW E63 016118
is further from the crack planey50. This form has the fea
ture that the force goes to zero at large positive extension
the nearest-neighbor springs. In the limit of largea, this
force-law approaches a step-function~with critical spring ex-
tension 1!, a form introduced by Slepyan@3#, and the subject
of much investigation@5–8,10,11#. The lattice has 2N12
rows in they direction, separated by a distance)/2, so that
the rows are labeled fromy52(2N11))/4 to y5(2N
11))/4. The displacementsu of the bottom and top rows a
y56(2N11))/4 are constrained to be6D. We introduce
a Kelvin-type viscosity parametrized byh via an additional
dissipative force

g1,25hk1,2

d

dt
~u22u1!, ~2!

wherek1,2 is an effective spring constant

k1,25 f 1,2/~u22u1!. ~3!

This form was chosen so as to ensure a purely dissipa
force which in the limit of largea goes over to the form
hu(12(u22u1))(u̇22u̇1) studied in connection with dissi
pation in the piecewise linear model@6–8,12#.

These forces define the model. The equation of motio
simply

üxW5 (
xW8Pnn

~ f xW ,xW81gxW ,xW8!. ~4!

We shall primarily be interested here in steady-state cra
moving with velocity v where the displacements have t
Slepyan formux,y(t)5uy(t2x/v). Furthermore, we will fo-
cus initially on symmetric cracks, such thatu2y(t)52uy(t
11/(2v)), which is the symmetry appropriate to steady-st
cracks in the piecewise linear model@5#. Then, solving for
the steady-state crack means solving forN functions of time,
characterizing the time development of a typical mass p
in each row of the lattice. The equations are nonlocal in tim
due to the coupling between different lattice points. As th
is no hope of constructing analytic solutions at generala, we
solve this problem numerically.

To proceed, we discretize the time variable in units
some smalldt. The key insight involved in constructing
numerical procedure is noting that the steady-state equa
have a banded structure, just as was the case for the p
wise linear model@6#. This is due to the fact that mass poin
are coupled to nearest neighbors, which gives rise via
Slepyan ansatz to a coupling to displacements at a finite
separation ofnb51/(v dt). Of course, the equations here a
everywhere nonlinear and we need to employ Newto
method to find a solution. This is nonetheless computati
ally feasible, since the update step in Newton’s method
linear problem with the aforementioned banded structure

Imagine searching for a solution assumed to have so
velocity v. There is one equation of motion for each d
placement fielduy at each discrete instant in time. In add
tion, fixing the translation invariance by some condition su
asu)/4(0)51/2 gives one additional equation, which we c
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use to solve for the driving displacementD. The only prob-
lem is thatD is involved in many different equations and s
destroys the banded structure of the problem. Two differ
ways to circumvent this difficulty present themselves. T
simpler of the two is to guess, for a given velocity, a value
D, and solve a modified system of equations where the eq
tion of motion at t50,y5)/4 has been dropped, and th
time translation has been fixed. The resulting banded pr
lem can be solved economically, and the violation of t
dropped equation of motion calculated. This defines a m
match function, which has a zero at the true value ofD,
which is located by a standard zero-finding routine. A mo
efficient approach is to realize that solving the entire line
system can be accomplished at essentially no more exp
than the fully banded modified system of the first approa
The algorithm for achieving this is presented in the Appe
dix. The advantage of this approach is that the Newton so
produces a value ofD directly, without the need of invoking
a outer root-finding routine.

III. THE SMALL VELOCITY REGIME

We have already seen in Ref.@9# that smoothing the form
of the force-law effects a dramatic reduction in the windo
of drivings for which arrested cracks exist. As the movi
crack solution arises as a backward bifurcation of the
rested crack, we can expect that small velocity cracks
also extremely sensitive to the smoothness of the force-l
An indication of this can be found in our previous study@6,7#
of a continuous-x, discrete-y model, which did not have any
window of arrested cracks. There the velocity rose linea
from zero as the drivingD increased from the Griffith value
DG , with a slope inversely proportional toh. The study of
small velocity solutions with sharp but not discontinuo
force laws should be directly related to experimental data
the onset of propagating cracks in materials such as si
crystal silicon@13#.

As mentioned above, we solve the steady-state prob
via Newton’s method. We present in Figs. 1~a!–1~c! a graph
of v versusD/DG for various values ofh and a, together
with the results from the piecewise linear limit. We chose
present data forN53 so as to be able to investigate smal
velocities at reasonable computational cost; the small ve
ity regime is relatively insensitive toN @6#. A few general
trends are evident from these plots. First, the effect ofa is
much more pronounced at small velocity. Second, smooth
the potential by decreasinga postpones the onset of th
backward branch of the curve to lower velocity. This is co
sistent with the narrowing of the window of arrested crac
with decreasinga, since the curve is forced to turn back
meet the end of the arrested crack branch. Decreasinga also
decreases the amplitude of the oscillations present at smah.
Examining the effect of varyingh, we see that the largerh’s
are less sensitive toa. This is to be expected, since even
the piecewise linear modelh reduces the extent of the back
ward branch which is one of the primary consequences
having smallera. This reduction is related to the increase
the size of the process zone with increasingh @7#, which
smoothes out the lattice structure in a similar manner to
8-2
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NONLINEAR LATTICE MODEL OF VISCOELASTIC . . . PHYSICAL REVIEW E 63 016118
accomplished by smoothing the potential. Thus, in gene
decreasinga and increasingh both act to reduce the lattice
trapping effects which give rise to the backward branch
should be noted that this analysis is consistent with the o

FIG. 1. Dependence ofv on D/DG for a55, 15, 40, and 100
together with the piecewise linear model forh50.25, 1, and 3.N
53, dt50.1.
01611
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of running cracks directly aboveDG in a molecular dynamics
simulation using Lenard-Jones potentials@14#.

Another way to see that reasonably smooth force-la
give rise to essentiallyx-continuum behavior is to look athv
as a function ofD for different h’s. In the piecewise linear
model, thehv scaling@15# only sets in for relatively largeh,
where the process zone is large@7#, and, even then, not fo
the smallest velocities, where lattice effects dominate.
the x-continuum model, on the other hand, thehv scaling is
exact for allh and all velocities much less thanc, since 1/h
~more preciselya/h, wherea is the lattice constant in they
direction! andc are the only velocity scales in the problem
in the x-continuum approach. In Fig. 2, we present the d
for the casea55. We see that the data overlap extreme
well, except for the highest velocity data for each value ofh.
We expect this overlap to also break down for extrem
small velocities, where lattice trapping sets in.

The other point of interest is the nature of the solutio
for small h. In the piecewise linear model, the solutions
the backward branch are inconsistent at smallh, since the
underdamping of the backward running waves leads to p
cracking. This is of course not a problem in our fully no
linear model, since cracking here is a reversible proce
Nevertheless, it is amusing to note that the solutions on
backward branch for smallh do not behave in this manne
They do not crack and reheal. Rather, they exploit
smooth transition in the force law to crack in a slow, mon
tonic fashion. We show in Fig. 3~a! the extension of a bond
along the crack surface as a function of time~all such bonds
having the same time history, in accord with the Slepy
ansatz!, for a540, 100, and 200, along with the analogo
result for the piecewise linear model. We see that the limi
largea does not correspond to the behavior of the piecew
linear model. Not surprisingly, then, it turns out thev vs D
curve for largea does not converge to the piecewise line
result. Thus, for example, for the case considered in F
3~a!, namely N53, v50.1,h50.25, the limiting value of
D/DG for large a is 1.2140, as compared to 1.2778 for th
piecewise linear model. Whereas the bond extension
passes the critical extension of unity in the piecewise lin
model, and then returns to unity before cracking, the bo

FIG. 2. Dependence ofhv on D/DG for a55, for h50.25, 1,
and 3. Again,N53, dt50.1.
8-3
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DAVID A. KESSLER AND HERBERT LEVINE PHYSICAL REVIEW E63 016118
extension in the nonlinear model is monotonic, and spen
long time near critical extension. A clearer picture of th
emerges in Fig. 3~b!, where we present the force exerted
the bond as a function of time for the nonlinear model. W
see that the bond exploits the nonlinearity of the force-law
crack in a very slow fashion.

IV. LARGE VELOCITY REGIME

It is known @5,11# that the piecewise linear solution
inconsistent at large velocity due to the cracking of oth
bonds. This has been extensively studied for the mode
problem in an infinite square lattice and well as for mode I
a triangular lattice@8#. We thus expect that for velocitie
larger than the critical one at which the inconsistency fi
appears, the solutions of our nonlinear model will diver
significantly from those of the piecewise linear model.

To begin, we use our steady-state code to find large
locity solutions of the equations of motion. We present
Fig. 4 data forv versusD/DG at three values ofa, together
with the analogous results from the piecewise linear mo

FIG. 3. ~a! Bond extension along crack surface versust, for a
540, 100, and 200 together with the piecewise linear model res
~b! Bond force along crack surface versust, for a540, 100, and
200. In both figures,N53, h50.25,v50.1, anddt50.1. Note that
t50 has been chosen as the instant of bond rupture in the piece
linear model results. The other curves have been shifted in tim
maximize registry, as bond rupture is a continuous process, oc
ring over a finite interval of time, at finitea.
01611
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We see that for velocities less than about 0.6c, the curves
basically coincide, with the smallesta curve lying slightly
below the others. However, in the range 0.6c,v,0.7c, the
data exhibit a marked sensitivity toa. The lowa curve is flat
in this region, and asa is increased, monotonicity is de
stroyed and a local maximum and minimum are creat
These features are completely absent in the piecewise li
data, indicating that the additional bond breaking, absen
construction in the piecewise linear solution, is responsib
Clearly, once a local maximum inv versusD sets in, as it
does for large enougha, the steady-state solutions are u
stable forD’s past the maximum. We address this issue
the next section, where we perform a stability analysis of
steady-state solutions. Nevertheless, it is interesting to n
that past this band of velocities, the dependence ona is again
quite mild, but very different from the piecewise linear r
sults.

V. STABILITY ANALYSIS

We now consider the linear stability of the traveling wa
state given by the aforementioned Slepyan ansatzux,y(t)
5uy(t2v/x). Specifically, we assume a solution of the for

ux,y~ t !5uy
~0!~t !1e2vxduy~t!, ~5!

wheret is the traveling wave coordinatet2x/v andu(0) is
the previously determined solution. For the stability proble
we takedu!1 and expand to linear order. Note that the la
term can be written in the alternate formevvtdũy(t) with

dũy~t!5duy~t!evvt. ~6!

Hence, for stability we must have Rev,0, i.e., perturbations
must decay in time at a fixed position in the frame movi
with the crack tip.

We substitute this assumption into the equation of moti
This leads to the linear problem

s.

ise
to
r-

FIG. 4. v/c versusD/DG for N58, h50.1. Data is presented
for the casesa55, 15, and 100, as well as for the piecewise line
model.
8-4
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NONLINEAR LATTICE MODEL OF VISCOELASTIC . . . PHYSICAL REVIEW E 63 016118
d2

dt2 duy~t!5(
nn

G~xW ,xW8!„duy~t!2duy8~t8!ev~x2x8!
…

1hkxW ,xW8„uy
~0!~t !2uy8

~0!
~t8!…

3
d

dt
„duy~t!2duy8~t8!ev~x2x8!

…, ~7!

where we have defined

G~xW ,xW8!5 f 8„uy
~0!~t !2uy8

~0!
~t8!…1hkxW ,xW8

8 „uy
~0!~t !

2uy8
~0!

~t8!…
d

dt
„uy

~0!~t !2uy8
~0!

~t8!… ~8!

and of courset85t2x8/v.
To find the allowed values ofv, we proceed as follows

First, we impose the asymptotic boundary conditions tha
all xW outside of our explicit lattice points,du50. We then
pick an arbitrary normalization by fixingduy5)/4(0)51 and
simultaneously relax the equation of motion at that sa
point. This procedure, implemented for some guessed v
of v, converts our problem into an inhomogeneous, ban
system of linear equations for the complex variablesduy(t)
which can be solved by standard techniques. The mis
equation then forms a complex mismatch function who
zeroes then determine the allowed values of the eigenv
v.

Two other details should be noted. First, we do not i
pose any symmetry restrictions on our perturbation with
spect to reflections about the crack plane. Also, any time
find a root with some specific value of Imv, an equivalent
solution exists with

Im v→2p2Im v,

duy→duy* ~even rows!, ~9!

duy→2duy* ~odd rows!.

By even and odd, we mean the parity of the lattice units
distance from the rowy5)/4. This result follows from the
fact that the governing equation is real and that thex coor-
dinate of points on even rows is integral, whereas it is h
integral for odd and purely imaginary on odd ones.

One obvious test of our stability analysis arises from
fact that translation invariance guarantees that there is a
at v50 with eigenfunction

duy~t!5
d

dt
uy

~0!~t !Y d

dt
uy5)/4

~0! ~0!. ~10!

Actually, our discretization for numerical purposes of t
continuous variablet breaks this exact invariance and hen
the mode should be at zero only in the smalldt limit. In the
data we present below, the zero mode is found with a typ
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accuracy of 1022, and the eigenfunction to the same acc
racy agrees with its expected form.

In Fig. 5~a!, we show the basic result that emerges fro
our analysis, namely that as the driving displacement is
creased, there is a mode which crosses the stability thresh
In Fig. 5~b!, we show the associated Imv. At the point of
instability, Imv is close to but not exactly equal top. Were
it equal top, this would be a period-doubling instability, a
the perturbative displacements at neighboringx values~at the
samet! would alternate in sign. More general values of Imv
signify a Hopf bifurcation which in general has a frequen
incommensurate with the original frequency associated w
moving one lattice spacing. The signature of such a bifur
tion should be a slowly oscillating crack tip speed, with t
oscillation frequencyv tip5uIm v2pu.

In Fig. 6, we show the real part of the eigenfunction f
the rowsy56)/4 as a function of the traveling wave co
ordinatet. Note that the perturbation is almost, but not e
actly, antisymmetric around the crack plane. The eigenve
decays slowly downstream and very rapidly upstream of
crack tip; it is therefore a localized mode connected with
tip dynamics diverging from the pure Slepyan form.

In previous studies of piecewise linear models~which cor-
respond to the limita→`!, it was noted that the Slepya
solution breaks down above a critical velocity. There, t
criterion for this breakdown was connected to the fact t

FIG. 5. Eigenvalue for stability problem, withN58, a515, and
h50.1. The calculation was done withL5200 and fixednb512.
The velocityv was varied by varyingdt; note that by definitionv
51/(nb dt). Rev is shown in~a!, Im v in ~b!.
8-5
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DAVID A. KESSLER AND HERBERT LEVINE PHYSICAL REVIEW E63 016118
certain bond extensions other than those along the presu
crack line go above the breaking threshold. In our curr
model where the force-law is analytic, there is no such
terion and the steady-state solution found by our proced
does not need to be checked for any auxiliary condition.
the other hand, we do observe a linear instability. It is the
fore of interest to compare these two criteria, i.e., to inve
gate whether the stability criterion in the largea limit goes
over smoothly to the inconsistency criterion for the idea
brittle case. To do this, we have plotted in Fig. 7 the ho
zontal bond extension along the crack line for a steady-s
solution ata550 right at the onset of the linear instability
Note that the bond extension is extremely close~roughly of
order 1/a! to what would be the breaking threshold. Thu
the results of the ideally brittle case as to where nontriv
spatio-temporal dynamics of the crack tip sets in are no
artifact of the force-law discontinuity; i.e., smoothing th
spring law does not alter the basic conclusion. This is go
news, as the ideal case has proven rather amenable to
lytic techniques which enable calculations to be done
much largerN ~even for infiniteN! than is possible for any
direct numerical scheme.

One nagging question posed by our results concerns

FIG. 6. Eigenvector for stability problem, withN54, a550,
and h50.2. The calculation was done withL5200 andnb512,
and at the point of instability,dt50.087 02.

FIG. 7. Horizontal bond extension for marginally stable so
tion, with N54, a550, andh50.2. The calculation was done wit
L5200,nb512, anddt50.087 02.
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fact that the instability is so close to but not exactly at t
period-doubling point of Imv5p. We have investigated
whether there is any tendency for the mode to get pinne
the period-doubling point as parameters are varied, as ce
limits are reached, etc. For example, in Fig. 8 we show Imv
at threshold versusa. As far as we have been able to dete
mine, this pinning does not occur and the generic bifurcat
always leads to an incommensurate oscillating tip state.
will compare this prediction with direct numerical simula
tions of the equations of motion in the next section.

VI. COMPARISON TO SIMULATION

In order to test the results of the stability analysis, a
also to investigate the nature of the dynamics past the in
bility threshold, we have implemented a direct numeric
simulation of the equations of motion. Our system is a tria
gular lattice, of width 2N12 whose top and bottom rows ar
fixed to have displacement6D. We start with a uniformly
strained state, except for the first few left-hand columns
mass points. The initial displacement of these points is ta
to vary linearly inx from 6D atx50 to that of the uniformly
strained state atx510. The equations of motion are the
stepped forward in time, using a simple Euler scheme.
track the velocity of the crack by monitoring the bond exte
sions, and noting when they exceed unity, which we take
our criterion of cracking. Note that in this model, cracking
in principle a reversible process and so this criterion
merely a convenient way of keeping track of the dynam
and not an intrinsically important threshold.

As expected, for moderateD the only bonds that ‘‘crack’’
are the diagonal bonds that span the midline. The time
tween cracking events is constant, and, to best compare
our steady-state calculations above, we fix our time stepdt in
each case so that there are six time steps between each c
ing event; this can then be directly compared to our stea
state solutions computed with time bandwidthnb[1/(v dt)
512. We find that the velocities obtained in this way repr
duce extremely well the velocities calculated by our stea
state code.

As we increaseD above the critical value for instability
calculated in the preceding section, we indeed find that

-

FIG. 8. Variation of Imv at the marginal stability point witha;
data is all forN54, h50.2.
8-6
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NONLINEAR LATTICE MODEL OF VISCOELASTIC . . . PHYSICAL REVIEW E 63 016118
pattern of steady-state cracking breaks down. Some hori
tal bonds on the crack surface begin to crack, and the ave
velocity of the crack falls dramatically, presumably due
the draining of energy by these extra cracking events. I
important to note that these broken horizontal bonds are
waysbehindthe crack tip, in accord with the calculations
the piecewise linear model. It is not clear whether there is
fact a discontinuous drop in the average velocity. The sh
of the drop does appear to be insensitive to thedt chosen, so
that in any event it does not appear to be a numerical arti
of finite dt.

As a test of our stability calculation, we have comput
the Hopf frequency directly from the numerical simulatio
We fixed D to lie slightly higher than the critical value fo
the onset of the instability and measured, at the momen
the breaking of a northeast–southwest diagonal bond,
extension of the bond. Due to the discreteness of the t
step, this is somewhat larger than unity. If we had tr
steady-state propagation, this value would be constant.
stead, for thisD, we find that the value oscillates about som
value, with the magnitude of the oscillation growing in tim
The growth we associate with the small positive growth r
of the perturbation in the unstable state, and the frequenc
oscillation with the Hopf frequency. In Fig. 9, we show th
data. The period of oscillation is essentially 1~in other
words, the time between breakings of this type of bon!,
which corresponds to a Hopf frequency of essentiallyp. By
numerically fitting a sine wave to the data, we find that t
Hopf frequency is approximately 3.272, in very good agr
ment with the stability calculation result shown in Fig. 5~b!.

As we increaseD further, at some point the average v
locity starts to increase again. Examining the solution in t
region in more detail, we show in Fig. 10 the time history
three adjacent points on the crack surface. We see tha
third trace is essentially identical to the first, and differs s
nificantly from the second. It appears then that the sys
has settled into a new kind of steady-state solution, m
complex than the simple Slepyan form. To test this,
implemented a new steady-state algorithm, designed to a
for this period-2 type solution. We assumed that in each r

FIG. 9. Bond extension at breaking as a function of positiox
along the crack surface. HereN58, h50.1, a515, D52.6215,
D/DG51.2693, dt50.105 3852. The fitted curve is 3.5
31025 sin(3.271 66x22.856 42)exp(0.003 68x).
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there are two possible time histories for particles, which
ternate. We also did not assume any symmetry across
crack surface. Taking care to organize the storage so tha
banded structure is maintained, we employed our ban
Newton’s method. Working for the sake of computation
convenience atN54, the algorithm succeeded in obtainin
steady-state solutions where the symmetry between the
time histories~as well as up–down symmetry across t
crack surface! is broken. We traced out the velocity-D rela-
tion for this solution. We find that the line of solutions
disconnected from the standard Slepyan symmetric bra
and that in general there are multiple solutions for eachD.
Starting from a solution obtained from using the simulati
to obtain an initial guess, we tracked the solution as we v
ied D. The velocity decreased with decreasingD and then
turned around and after some wandering headed off to la
D with the velocity higher than the original branch. Ev
dently, then, the solutions physically realized in the simu
tion lie on the lower, thusslower of the asymmetric
branches. This data is presented in Fig. 11, along with
~time-averaged! velocities measured in simulation.

FIG. 10. Time trace of displacement of three adjacent points
the upper crack surface. HereN58, h50.1, a515, D52.7,
D/DG51.3073,dt50.108 58.

FIG. 11. Velocity vsD/DG for symmetric and period-2 solu
tions, together with measured~time-averaged! velocity from simu-
lation. N54, h50.1, a515.
8-7
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It is reasonable to assume that the existence of a per
doubled solution very close to the original symmetric bran
is associated with the fact that the Hopf bifurcation is nea
period doubling. To check this notion, we note that it w
found in the preceding section that the Hopf-frequen
passed throughp for some particular value ofa. For this
value, one expects the period-doubled branch to hit the m
branch, corresponding to a higher co-dimension bifurcat
To address this question, we have also traced out the b
cated solution fora540, which is very slightly below this
crossing point. The amazingly baroque solution curve, ag
generated by tracking the solution starting from a simulat
derived initial guess lying on the lower branch, is presen
in Fig. 12, together with the symmetric branch. We see t
the bifurcated solution curve turns up to approach the s
metric curve, before veering away. Examination of the so
tions indicate that the asymmetry is extremely small in t
region of close approach. Presumably, then, at the cros
value ofa the bifurcated solution actually meets the symm
ric branch, and the bifurcation is perfect at this point. As
meeting is not on the presumably stable branch of the bi
cated solution, the bifurcation should prove to be subcritic
A detailed study of the nature of the bifurcation should pro
mathematically interesting, though not necessarily physic
relevant. It should be noted that we have also uncove
another, apparently disconnected, branch of period-2 s
tions. These other solutions presumably play an impor
role in the exact nature of the bifurcation, though again th
do not seem to be important for the physics.

IncreasingD further, the simulation tracks the bifurcate
steady-state solution until at some point yet additional bo
are broken, and the velocity falls below that of the bifurca
solution. The time dependence of this state becomes m
complicated than the simple period-2 structure of the bif
cated steady-state. It is important to point out that the ad
tional bonds are also always located behind the crack
which remains on the midline. Thus the additional bo
breaking is reminiscent of side branching in dendritic grow
@16#; i.e., a phenomenon induced by the tip and which is
behind by the growing crack. As opposed to dendr
growth, in mode III fracture the side branching is genera
intrinsically by the tip, and is not noise induced@17#. We see,

FIG. 12. Velocity vsD/DG for symmetric and period-2 solu
tions.N54, h50.1, a540.
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however, no tendency for the tip itself to leave the midlin
This can be seen in Fig. 13, where the broken bonds
portrayed for two different values ofD. Also, the picture
shows that as the driving is increased the size of the s
branches increases, but they are always microscopic, g
ing to a length of about 8 at the largerD. In this latter pic-
ture, the crack is moving at an average velocity ofv/c
50.789, which is quite fast. Furthermore, the side branc
are not only short, but the side branching period is also
the lattice scale. Thus, the claim of Ref.@11# that these side
branches are related to the the experimentally seen mi
branching appears to us doubtful, especially in light of o
preliminary work on mode I cracking@18#, where the tip
dynamics are very different. This issue is worthy of furth
exploration.
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APPENDIX: SOLVING THE ALMOST-BANDED
PROBLEM

In this appendix, we outline how to efficiently solve th
linear problem associated with the Newton’s method tre
ment of the nonlinear steady-state problem. It is importan
set up the problem correctly to achieve an almost-ban
structure. We order the variables with they index running
more quickly, since we wantN!2L11, the length of the
system in thex direction. We order the equations similarl
replacing the equation of motion for the sitex50, y5)/4
~wherex runs from2L to L! by the constraint equationu
5u0, where the constantu0 can be chosen arbitrarily. Th
equation of motion for the site~0,)/4! is taken to be the las
equation. We also note that equations of motion have to
taken for the columns2L21<x<L21, since the number
of linear modes which diverge asx→2` is one greater than
the number which diverge for large positivex ~see Refs.@6#,

FIG. 13. Broken bonds forN520, h50.1, a515. ~Top! D
55.5, D/DG51.715; ~bottom! D56.5, D/DG52.207.
8-8
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@7#! due to the presence of the third derivative operator.
The problem then has the structure

S Mb V

WT 0 D S dU
dD D5S A

b D . ~A1!

Here,Mb is a banded square matrix of sizeN(2L11) with
lower bandwidthN(nb12) and upper bandwidthN(nb11)
@with nb an integer such that the velocity isv51/(nbdt)#.
The replacement of the equation for the distinguished site~0,
)/4! is necessary to ensure thatM is not singular. The
length N(2L11) vector V contains the derivatives of th
equations of motion with respect toD and the vectorW con-
tains the equation of motion for the distinguished site~which
y

n
d

01611
does not depend onD!. The shift in the displacementsdU,
and the sourceA are also vectors of lengthN(2L11), and
dD andb are numbers. We can explicitly solve this system
terms ofMb

21, which is easy to compute due to its band
structure. We find

dD5
WTMb

21A2b

WTMb
21V

,

~A2!
dU5Mb

21~A2~dD!V!.

Hence, our entire system can be solved with no more ef
than would be required for a fully banded problem.
J.
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