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We study the effect of general nonlinear force laws in viscoelastic lattice models of fracture, focusing on the
existence and stability of steady-state mode IIl cracks. We show that the hysteretic behavior at small driving is
very sensitive to the smoothness of the force law. At large driving, we find a Hopf bifurcation to a straight
crack whose velocity is periodic in time. The frequency of the unstable bifurcating mode depends on the
smoothness of the potential, but is very close to an exact period-doubling instability. Slightly above the onset
of the instability, the system settles into a exactly period-doubled state, presumably connected to the afore-
mentioned bifurcation structure. We explicitly solve for this new state and map out its velocity-driving relation.
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[. INTRODUCTION driving curve, indicating the solutions are unstable. Thus, in
any case, stable solutions are not found for small velocities.
The problem of dynamic fracture has received increasing At large velocities, the analytic solutions are again incon-
attention in the physics community in the last decéatlp sistent, this time due to the breaking of additional bonds not
The experiments of Finebemt al. [2], showing interesting 0N the crack surface. The analytic methods thus are unable to
dynamical behavior for large velocity cracks have been at théell us anything about the dynamics beyond this point.
center of this growing interest. From a theoretical point of An additional limitation of the piecewise linear force law
view, the singularities at the crack tip associated with conis that it complicates the task of constructing a linear stability
tinuum treatments of the crack problem make the problenireatment of the steady-state crack. This is due, of course, to
challenging. The presence of these singularities necessitat#te discontinuous nature of the force law. For these reasons,
a treatment of the crack at the microscopic level, where th&ve choose in this paper to examine steady-state crack propa-
continuum treatment and its associated singularities are n@ation in lattice models with arbitrary force-laws. In particu-
applicable. One line of attack on this problem, initiated bylar, we study a family of force-laws parametrized dysuch
Slepyan[3], has been through the study of lattice models ofthat for smalla the force-law is smooth and the force-law
cracks. These lattice models are simpler than full atomistigoes over to the piecewise linear one in the limit of infinite
simulationg[4] in that the connectivity of the atoms is speci- @ We have previously studiel®] the behavior of arrested
fied from the beginning, and so dislocations are excluded. mode lII cracks with this family of force-laws, and found
Much progress has been made in understanding steadshat the range of drivings for which arrested cracks exists
state propagation of cracks in lattice systd®$—8. A key  harrows sharply a& is reduced from infinity. In this paper
simplifying assumption underlying much of this progress hagve examine moving mode Il cracks for varying We find
been the assumption of piecewise linear forces between tHgat the behavior for small velocity is very sensitiventoFor
particles, so that the particles interact with Hookean springdarge velocities, we find that the effect of finiteis to con-
which break at some critical extension, reducing the force td/€rt the inconsistency to a regular linear instability, here of
zero. With these piecewise linear interactions, the model ad-opf type. We show that at some distance into the unstable
mits an analytic solution via the Wiener—Hopf technique.regime, the system adopts a new form of steady-state behav-
This solution has been carried out both for mode | and modéor which breaks the symmetry across the crack surface and
Il cracks, for both finite width and infinitely wide systems, has a period-2 structure. We conclude with some observa-

with and without dissipation. tions about the model deep in the unstable regime.
A general feature of these solutions is that they are prob-
lematic at both very small and very larg®ughly above 0.7 Il. MODEL AND GENERAL METHODOLOGY

of the wave spee@dvelocities. For small dissipation, the so-
lutions are inconsistent at small velocities, in that bonds on|
the qrack surface which are assymed to crack. at tnenQ, displacement at nearest neighbor site with (scalaj dis-
say, in fact are seen to crack earlier. For large dissipation, thSIacementsu U.. respectivelv to be

small velocity solutions are consistent, but exhibit a back- =2 P y
ward (velocity increasing with decreasing drivingelocity/ 1+tanha(1— o Uz—Uy)))

In this paper, we study a triangular lattice model of mode
cracking. We take the force exerted at sitg¢ by the

f1,=(uy,— 1
1,2=(Uz—Uy) 1+tanha) ) 1)

*Electronic address: kessler@dave.ph.biu.ac.il wherea is a parameter which controls the smoothness of the
"Electronic address: levine@herbie.ucsd.edu potential andr= =1 is positive ifX, lies to the left ofx; or
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is further from the crack plang=0. This form has the fea- use to solve for the driving displacemeht The only prob-
ture that the force goes to zero at large positive extensions d&ém is thatA is involved in many different equations and so
the nearest-neighbor springs. In the limit of large this  destroys the banded structure of the problem. Two different
force-law approaches a step-functigwith critical spring ex- ways to circumvent this difficulty present themselves. The
tension 3, a form introduced by Slepydi], and the subject simpler of the two is to guess, for a given velocity, a value of
of much investigatiof5-8,10,11. The lattice has R+2 A, and solve a modified system of equations where the equa-
rows in they direction, separated by a distandé®2, so that tion of motion att=0,y=v3/4 has been dropped, and the
the rows are labeled frong=—(2N+1)v3/4 to y=(2N time translation has been fixed. The resulting banded prob-
+1)v3/4. The displacementsof the bottom and top rows at lem can be solved economically, and the violation of the
y==*(2N+1)v3/4 are constrained to beA. We introduce dropped equation of motion calculated. This defines a mis-
a Kelvin-type viscosity parametrized byvia an additional match function, which has a zero at the true valueAof
dissipative force which is located by a standard zero-finding routine. A more
efficient approach is to realize that solving the entire linear
system can be accomplished at essentially no more expense

912= 7K1 2 g7 (U2~ Ua), () than the fully banded modified system of the first approach.
The algorithm for achieving this is presented in the Appen-
wherek, , is an effective spring constant dix. The advantage of this approach is that the Newton solver
produces a value A directly, without the need of invoking
kio="T12/(Uy—uy). 3 a outer root-finding routine.
This form was chosen so as to ensure a purely dissipative
force which in the limit of largea goes over to the form Ill. THE SMALL VELOCITY REGIME
76(1—(u;—u,))(Uz—Uy) studied in connection with dissi- e have already seen in R§®] that smoothing the form
pation in the piecewise linear mod@-8,12. __of the force-law effects a dramatic reduction in the window
~ These forces define the model. The equation of motion i grivings for which arrested cracks exist. As the moving
simply crack solution arises as a backward bifurcation of the ar-
rested crack, we can expect that small velocity cracks are
U= 2 (Fra+ 052 (4) aIS(_) e>_<tre_me|y se_nsitive to the smoothness _of the force-law.
% enn An indication of this can be found in our previous styéy7]

of a continuousx, discretey model, which did not have any

We shall primarily be interested here in steady-state crackwindow of arrested cracks. There the velocity rose linearly
moving with velocityv where the displacements have the from zero as the driving\ increased from the Griffith value
Slepyan formu, ,(t) =u,(t—x/v). Furthermore, we will fo- ~Ag, with a slope inversely proportional tg. The study of
cus initially on symmetric cracks, such that (t)=—uy(t  small velocity solutions with sharp but not discontinuous
+1/(2v)), which is the symmetry appropriate to steady-stateforce laws should be directly related to experimental data on
cracks in the piecewise linear modé&l]. Then, solving for the onset of propagating cracks in materials such as single
the steady-state crack means solvingNoiunctions of time,  crystal silicon[13].
characterizing the time development of a typical mass point As mentioned above, we solve the steady-state problem
in each row of the lattice. The equations are nonlocal in timeyia Newton’s method. We present in Figgajk-1(c) a graph
due to the coupling between different lattice points. As thereof v versusA/Ag for various values ofp and «, together
is no hope of constructing analytic solutions at genetalle  with the results from the piecewise linear limit. We chose to
solve this problem numerically. present data foN=3 so as to be able to investigate smaller

To proceed, we discretize the time variable in units ofvelocities at reasonable computational cost; the small veloc-
some smalldt. The key insight involved in constructing a ity regime is relatively insensitive tdl [6]. A few general
numerical procedure is noting that the steady-state equationsends are evident from these plots. First, the effectvd$
have a banded structure, just as was the case for the pieaguch more pronounced at small velocity. Second, smoothing
wise linear mode6]. This is due to the fact that mass points the potential by decreasing postpones the onset of the
are coupled to nearest neighbors, which gives rise via theackward branch of the curve to lower velocity. This is con-
Slepyan ansatz to a coupling to displacements at a finite timsistent with the narrowing of the window of arrested cracks
separation of,=1/(v dt). Of course, the equations here are with decreasingy, since the curve is forced to turn back to
everywhere nonlinear and we need to employ Newton'sneet the end of the arrested crack branch. Decreas#igo
method to find a solution. This is nonetheless computationeecreases the amplitude of the oscillations present at gmall
ally feasible, since the update step in Newton’s method is &xamining the effect of varying, we see that the largey's
linear problem with the aforementioned banded structure. are less sensitive ta. This is to be expected, since even in

Imagine searching for a solution assumed to have somihe piecewise linear modej reduces the extent of the back-
velocity v. There is one equation of motion for each dis-ward branch which is one of the primary consequences of
placement fieldl, at each discrete instant in time. In addi- having smallere. This reduction is related to the increase in
tion, fixing the translation invariance by some condition suchthe size of the process zone with increasing7], which
asu,s4(0)=1/2 gives one additional equation, which we cansmoothes out the lattice structure in a similar manner to that
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FIG. 1. Dependence af on A/Ag for =5, 15, 40, and 100
together with the piecewise linear model fgr=0.25, 1, and 3N

=3,dt=0.1.
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FIG. 2. Dependence ofv on A/Ag for a=5, for »=0.25, 1,
and 3. AgainN=3,dt=0.1.

of running cracks directly abov&g in a molecular dynamics
simulation using Lenard-Jones potentiglg].

Another way to see that reasonably smooth force-laws
give rise to essentially-continuum behavior is to look ajv
as a function ofA for different #'s. In the piecewise linear
model, thenv scaling[15] only sets in for relatively large,
where the process zone is largg, and, even then, not for
the smallest velocities, where lattice effects dominate. For
the x-continuum model, on the other hand, the scaling is
exact for allp and all velocities much less than since 14
(more preciselya/ 7, wherea is the lattice constant in the
direction andc are the only velocity scales in the problem,
in the x-continuum approach. In Fig. 2, we present the data
for the casea=5. We see that the data overlap extremely
well, except for the highest velocity data for each valueyof
We expect this overlap to also break down for extremely
small velocities, where lattice trapping sets in.

The other point of interest is the nature of the solutions
for small ». In the piecewise linear model, the solutions on
the backward branch are inconsistent at smalkince the
underdamping of the backward running waves leads to pre-
cracking. This is of course not a problem in our fully non-
linear model, since cracking here is a reversible process.
Nevertheless, it is amusing to note that the solutions on the
backward branch for smaly do not behave in this manner.
They do not crack and reheal. Rather, they exploit the
smooth transition in the force law to crack in a slow, mono-
tonic fashion. We show in Fig.(8) the extension of a bond
along the crack surface as a function of tifad such bonds
having the same time history, in accord with the Slepyan
ansatz, for «=40, 100, and 200, along with the analogous
result for the piecewise linear model. We see that the limit of
large o does not correspond to the behavior of the piecewise
linear model. Not surprisingly, then, it turns out thevs A
curve for largea does not converge to the piecewise linear
result. Thus, for example, for the case considered in Fig.
3(a), namelyN=3, v=0.1,7=0.25, the limiting value of

accomplished by smoothing the potential. Thus, in generalA/Ag for large « is 1.2140, as compared to 1.2778 for the

decreasingx and increasing both act to reduce the lattice- piecewise linear model. Whereas the bond extension sur-
trapping effects which give rise to the backward branch. Ifpasses the critical extension of unity in the piecewise linear
should be noted that this analysis is consistent with the onsebodel, and then returns to unity before cracking, the bond
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@ ]
o
u? N We see that for velocities less than aboutcQ.the curves
5 ] basically coincide, with the smallest curve lying slightly
C 04 - below the others. However, in the range®& <0.7c, the
8 — a=200 1 data exhibit a marked sensitivity ta The lowa curve is flat
02k -— =100 | in this region, and as is increased, monotonicity is de-
I = 0=40 | stroyed and a local maximum and minimum are created.
L L These features are completely absent in the piecewise linear
0 60 -40 20 0 data, indicating that the additional bond breaking, absent by
(b) ¢ construction in the piecewise linear solution, is responsible.

Clearly, once a local maximum in versusA sets in, as it

FIG. 3. (a) Bond extension along crack surface versubor «  does for large enough, the steady-state solutions are un-
=40, 100, and 200 together with the piecewise linear model resultsstable forA’s past the maximum. We address this issue in
(b) Bond force along crack surface versuigor a=40, 100, and  the next section, where we perform a stability analysis of the
200. In both figuresN=3, 7=0.25,v=0.1, anddt=0.1. Note that  steady-state solutions. Nevertheless, it is interesting to note
t=0 has been chosen as the instant of bond rupture in the piecewiggt past this band of velocities, the dependence @nagain

linear model results. The other curves have been shifted in time te]uite mild, but very different from the piecewise linear re-
maximize registry, as bond rupture is a continuous process, OCCUEjIts ’

ring over a finite interval of time, at finite.

extension in the nonlinear model is monotonic, and spends a V. STABILITY ANALYSIS

frggr“g]seir??:?r ((ég)tlCv?Leerxet?/(/]gIO?ésAen??r?(ﬁgr%lgtg;eerg dﬂgs We now consider the linear stability of the traveling wave
the bgnd as agf.unc,tion of timeF:‘or the nonlinear model W{:‘state given by the aforementioned Slepyan ansgig)
see that the bond exploits the nonlinearity of the force-law to uy(t—v/x). Specifically, we assume a solution of the form

crack in a very slow fashion. o
Uy (D) =U" () + e~ “Xsuy(7), (5)

IV. LARGE VELOCITY REGIME . _ _ o
where 7 is the traveling wave coordinate-x/v andu(® is

It is known [5,11] that the piecewise linear solution is the previously determined solution. For the stability problem,
inconsistent at large velocity due to the cracking of othefve takesu<1 and expand to linear order. Note that the last
bonds. This has been extensively studied for the mode Il{erm can be written in the alternate foreﬁvtguy(T) with
problem in an infinite square lattice and well as for mode | in
a triangular lattice[8]. We thus expect that for velocities
larger than the critical one at which the inconsistency first
appears, the solutions of our nonlinear model will diverge
significantly from those of the piecewise linear model. Hence, for stability we must have Re<0, i.e., perturbations

To begin, we use our steady-state code to find large vemust decay in time at a fixed position in the frame moving
locity solutions of the equations of motion. We present inwith the crack tip.

Fig. 4 data forv versusA/Ag at three values of, together We substitute this assumption into the equation of motion.
with the analogous results from the piecewise linear modelThis leads to the linear problem

STiy(7) = du,(7)e"*". (6)
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d? :
g2 0uy(n)= % G(X,X")(8uy( 1) — Sy (7")e**x))

+ 7Kg (U (1) —ug) (7))

Re ®

d 1\ aw(X—x")
xd—T(é‘uy(T)—ﬁuyr(T e ), (7)

where we have defined

G(R,%") =1 (U2 (1) Uy (7)) + 7k g (Ui (7)
(0) d 0) (a)
_uy’ (T,))E_(U;O)(T)_Uy, (T’)) (8)

and of courser’ =t—x'/v.

To find the allowed values ob, we proceed as follows. 3.25
First, we impose the asymptotic boundary conditions that at
all X outside of our explicit lattice pointsju=0. We then
pick an arbitrary normalization by fixinguy - ,3/4(0)=1 and
simultaneously relax the equation of motion at that same 3.15} —
point. This procedure, implemented for some guessed value :
of w, converts our problem into an inhomogeneous, banded 310 _
system of linear equations for the complex variabfes( 7) 5 | | | | |
which can be solved by standard techniques. The missing 153 104 125 156 127 128
equation then forms a complex mismatch function whose (b) AA
zeroes then determine the allowed values of the eigenvalue G
w

3.20 n

m o

: ) ) ) FIG. 5. Eigenvalue for stability problem, witk=8, «=15, and
Two other details should be noted. First, we do not im-,=0.1. The calculation was done with=200 and fixedn,=12.

pose any symmetry restrictions on our perturbation with reThe velocityy was varied by varyingit, note that by definitior

spect to reflections about the crack plane. Also, any time we-1/(n, dt). Rew is shown in(@), Im o in (b).

find a root with some specific value of l# an equivalent

solution exists with accuracy of 102, and the eigenfunction to the same accu-
racy agrees with its expected form.

IMo—27—IMm o, In Fig. 5a), we show the basic result that emerges from
our analysis, namely that as the driving displacement is in-
creased, there is a mode which crosses the stability threshold.
In Fig. 5b), we show the associated kn At the point of
instability, Imw is close to but not exactly equal t& Were
duy,— —éuy (odd rows. it equal to, this would be a period-doubling instability, as

the perturbative displacements at neighboringlues(at the

By even and odd, we mean the parity of the lattice units off@mer) would alternate in sign. More general values ofdm

distance from the row=v3/4. This result follows from the ~Signify a Hopf bifurcation which in general has a frequency

fact that the governing equation is real and thatstteoor- ~ incommensurate with the original frequency associated with

dinate of points on even rows is integral, whereas it is halfnoving one lattice spacing. The signature of such a bifurca-
One obvious test of our stability analysis arises from theoscillation frequencywy,=|Im w—l.

fact that translation invariance guarantees that there is a root In Fig. 6, we show the real part of the eigenfunction for
at w=0 with eigenfunction the rowsy= *v3/4 as a function of the traveling wave co-

ordinater. Note that the perturbation is almost, but not ex-
d d actly, antisymmetric around the crack pla_ne. The eigenvector
duy(7)= —u§,°>(7)/ _u§/0:>‘/3/4(0). (10) decays slowly downstream and very rapidly upstream of the
dr dr crack tip; it is therefore a localized mode connected with the
tip dynamics diverging from the pure Slepyan form.
Actually, our discretization for numerical purposes of the In previous studies of piecewise linear modglhich cor-
continuous variable breaks this exact invariance and hencerespond to the limite—o0), it was noted that the Slepyan
the mode should be at zero only in the sntatllimit. In the  solution breaks down above a critical velocity. There, the
data we present below, the zero mode is found with a typicatriterion for this breakdown was connected to the fact that

su,— éuy (even rows, 9)
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FIG. 6. Eigenvector for stability problem, witN=4, «=50, data is all forN=4, 7=0.2.

and »=0.2. The calculation was done with=200 andn,=12,
and at the point of instabilitydt=0.087 02. . o
fact that the instability is so close to but not exactly at the
certain bond extensions other than those along the presum@griod-doubling point of Inw=7. We have investigated
crack line go above the breaking threshold. In our curren¥vhether there is any tendency for the mode to get pinned at
model where the force-law is analytic, there is no such crithe period-doubling point as parameters are varied, as certain
terion and the steady-state solution found by our procedurbmits are reached, etc. For example, in Fig. 8 we showwim
does not need to be checked for any auxiliary condition. Orft threshold versua. As far as we have been able to deter-
the other hand, we do observe a linear instability. It is theremMine, this pinning does not occur and the generic bifurcation
fore of interest to compare these two criteria, i.e., to investi2lways leads to an incommensurate oscillating tip state. We
gate whether the stability criterion in the largelimit goes will compare this prediction with direct numerical simula-
over smoothly to the inconsistency criterion for the ideallytions of the equations of motion in the next section.
brittle case. To do this, we have plotted in Fig. 7 the hori-

zonta}l bond exten;ion along the crack Iine_for a .steadyfstate VI. COMPARISON TO SIMULATION
solution ata=50 right at the onset of the linear instability.
Note that the bond extension is extremely closmighly of In order to test the results of the stability analysis, and

order 1k) to what would be the breaking threshold. Thus,also to investigate the nature of the dynamics past the insta-
the results of the ideally brittle case as to where nontrivialbility threshold, we have implemented a direct numerical
spatio-temporal dynamics of the crack tip sets in are not asimulation of the equations of motion. Our system is a trian-
artifact of the force-law discontinuity; i.e., smoothing the gular lattice, of width N+ 2 whose top and bottom rows are
spring law does not alter the basic conclusion. This is goodixed to have displacementA. We start with a uniformly
news, as the ideal case has proven rather amenable to argrained state, except for the first few left-hand columns of
lytic techniques which enable calculations to be done foimmass points. The initial displacement of these points is taken
much largerN (even for infiniteN) than is possible for any to vary linearly inx from £A atx=0 to that of the uniformly
direct numerical scheme. strained state ax=10. The equations of motion are then
One nagging question posed by our results concerns thgtepped forward in time, using a simple Euler scheme. We
track the velocity of the crack by monitoring the bond exten-

1.0 sions, and noting when they exceed unity, which we take as
- our criterion of cracking. Note that in this model, cracking is
c 081 _ in principle a reversible process and so this criterion is
.g L merely a convenient way of keeping track of the dynamics
c g6l i and not an intrinsically important threshold.
g i As expected, for moderatk the only bonds that “crack”
L are the diagonal bonds that span the midline. The time be-
2 041 1 tween cracking events is constant, and, to best compare with
o | our steady-state calculations above, we fix our time dtép
Mozt 7] each case so that there are six time steps between each crack-
- 1 ing event; this can then be directly compared to our steady-
0065 _1'00 T 200 state solutions computed with time bandwiditfi=1/(v dt)

=12. We find that the velocities obtained in this way repro-
duce extremely well the velocities calculated by our steady-

FIG. 7. Horizontal bond extension for marginally stable solu- State code.
tion, with N=4, =50, andy=0.2. The calculation was done with As we increase\ above the critical value for instability
L=200,nb=12, anddt=0.087 02. calculated in the preceding section, we indeed find that the
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% 107 % sin(3.271 6&— 2.856 42) exp(0.003 68.

there are two possible time histories for particles, which al-
Nernate. We also did not assume any symmetry across the
ack surface. Taking care to organize the storage so that the

velocity of the crack falls dramatically, presumably due t(?banded structure is maintained, we employed our banded

the draining of energy by these extra cracking events. It i ; : :
important to note that these broken horizontal bonds are ailevvton s method. Working for the sake of computational

waysbehindthe crack tip, in accord with the calculations of convenience aN=4, the algorithm succeeded in obtaining
Y o P, .. steady-state solutions where the symmetry between the two

. . . . Nime histories(as well as up—down symmetry across the
fact a discontinuous drop in the average velocity. The shapgrack surfacgis broken. We traced out the velocity+ela-

?rf;?ﬁ\(lrr?pg\?eeri ﬁpdpoeeeg ;%tb: ngrnfglt\)lg gogﬂﬁ]h;?f;}’;zfa Ct'on for this solution. We find that the line of solutions is
y PP isconnected from the standard Slepyan symmetric branch

o Kr:tg ?;st of our stability calculation, we have computedand t'hat in general there are multiple sollutions fo_r eAch

the Hopf frequency directly from the n,umerical simulation Startlng from_ a_l_solutlon obtained from using t_he simulation

We fixed A to lie slightly higher than the critical value for {0 obtain an initial guess, we tracked the solution as we var-
ied A. The velocity decreased with decreasigand then

the onset .of the instability and measured, at the moment rned around and after some wandering headed off to large
the breaking of a northeast—southwest diagonal bond, th with the velocity higher than the original branch. Evi-

extension of the bond. Due to the discreteness of the tim . . . . .
step, this is somewhat larger than unity. If we had true’aently, then, the solutions physically realized in the simula-

steady-state propagation, this value would be constant. | fion lie on t_he Iow_er, thusslowe_zr Of. the asymmet_ric
stead, for this\, we find th'at the value oscillates about soﬁwerb.ranChes' This data_ S presented n Fig. 11, _along with the
e ’ ) N AR (time-averagepvelocities measured in simulation.
value, with the magnitude of the oscillation growing in time.
The growth we associate with the small positive growth rate
of the perturbation in the unstable state, and the frequency of 0.75 ' ' T :
oscillation with the Hopf frequency. In Fig. 9, we show the
data. The period of oscillation is essentially (i other
words, the time between breakings of this type of bond
which corresponds to a Hopf frequency of essentiallyBy R
numerically fitting a sine wave to the data, we find that the < P
Hopf frequency is approximately 3.272, in very good agree- S07r Y- T
ment with the stability calculation result shown in Figbp
As we increase\ further, at some point the average ve- — Symmetric
locity starts to increase again. Examining the solution in this [ -~ Period 2
region in more detail, we show in Fig. 10 the time history of ° Simulation
three adjacent points on the crack surface. We see that the 065K | . | . | ,
third trace is essentially identical to the first, and differs sig- ' 1.25 1.3 1.35
nificantly from the second. It appears then that the system A/A
has settled into a new kind of steady-state solution, more
complex than the simple Slepyan form. To test this, we FIG. 11. Velocity vsA/Ag for symmetric and period-2 solu-
implemented a new steady-state algorithm, designed to allowions, together with measurétime-averagedvelocity from simu-
for this period-2 type solution. We assumed that in each rowation. N=4, »=0.1, a=15.

pattern of steady-state cracking breaks down. Some horizo

G
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FIG. 13. Broken bonds foN=20, »=0.1, «=15. (Top) A

FIG. 12. Velocity vsA/Ag for symmetric and period-2 solu-
y e 107 Y P —5.5,A/Ag=1.715; (bottom) A=6.5, A/Ag=2.207.

tions.N=4, »=0.1, a=40.

It is reasonable to assume that the existence of a periodiowever, no tendency for the tip itself to leave the midline.
doubled solution very close to the original symmetric branchThis can be seen in Fig. 13, where the broken bonds are
is associated with the fact that the Hopf bifurcation is nearlyportrayed for two different values ak. Also, the picture
period doubling. To check this notion, we note that it wasshows that as the driving is increased the size of the side
found in the preceding section that the Hopf-frequencybranches increases, but they are always microscopic, grow-
passed throughr for some particular value of. For this ing to a length of about 8 at the largar In this latter pic-
value, one expects the period-doubled branch to hit the maiture, the crack is moving at an average velocity wdt
branch, corresponding to a higher co-dimension bifurcation=0.789, which is quite fast. Furthermore, the side branches
To address this question, we have also traced out the bifugre not only short, but the side branching period is also on
cated solution fore=40, which is very slightly below this the lattice scale. Thus, the claim of Rgf1] that these side
crossing point. The amazingly baroque solution curve, agaibranches are related to the the experimentally seen micro-
generated by tracking the solution starting from a simulatiorbranching appears to us doubtful, especially in light of our
derived initial guess lying on the lower branch, is presentedreliminary work on mode | cracking18], where the tip
in Fig. 12, together with the symmetric branch. We see thadynamics are very different. This issue is worthy of further
the bifurcated solution curve turns up to approach the symexploration.
metric curve, before veering away. Examination of the solu-
tion§ indicate that the asymmetry is extremely small in this ACKNOWLEDGMENTS
region of close approach. Presumably, then, at the crossing
value ofa the bifurcated solution actually meets the symmet- The work of D.AK. is supported in part by the Israel
ric branch, and the bifurcation is perfect at this point. As theScience Foundation. D.A.K. thanks the Lawrence Berkeley
meeting is not on the presumably stable branch of the bifurNational Laboratory, where this work was initiated, for its
cated solution, the bifurcation should prove to be subcriticalhospitality. H. L. is supported in part by the US NSF under
A detailed study of the nature of the bifurcation should proveGrant No. DMR98-5735.
mathematically interesting, though not necessarily physically
relevant. It should be- noted that we have also -UnCOVErEd APPENDIX: SOLVING THE ALMOST-BANDED
a_mother, apparently dlsc_onnected, branch of period-2 solu- PROBLEM
tions. These other solutions presumably play an important
role in the exact nature of the bifurcation, though again they In this appendix, we outline how to efficiently solve the
do not seem to be important for the physics. linear problem associated with the Newton’'s method treat-

IncreasingA further, the simulation tracks the bifurcated ment of the nonlinear steady-state problem. It is important to
steady-state solution until at some point yet additional bondset up the problem correctly to achieve an almost-banded
are broken, and the velocity falls below that of the bifurcatedstructure. We order the variables with tiendex running
solution. The time dependence of this state becomes mor@ore quickly, since we waril<2L+1, the length of the
complicated than the simple period-2 structure of the bifursystem in thex direction. We order the equations similarly,
cated steady-state. It is important to point out that the additeplacing the equation of motion for the site=0, y=v3/4
tional bonds are also always located behind the crack tiplwherex runs from—L to L) by the constraint equation
which remains on the midline. Thus the additional bond=u0, where the constantO can be chosen arbitrarily. The
breaking is reminiscent of side branching in dendritic growthequation of motion for the sité®, v3/4) is taken to be the last
[16]; i.e., a phenomenon induced by the tip and which is leftequation. We also note that equations of motion have to be
behind by the growing crack. As opposed to dendritictaken for the columns-L—1<x=<L -1, since the number
growth, in mode Ill fracture the side branching is generatedf linear modes which diverge as— — o is one greater than
intrinsically by the tip, and is not noise inducgl’]. We see, the number which diverge for large positixdsee Refs[6],
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[7]) due to the presence of the third derivative operator.  does not depend of). The shift in the displacemenisU,

The problem then has the structure and the sourcd are also vectors of lengtN(2L+1), and
S6A andb are numbers. We can explicitly solve this system in
(Mb V) 5U) :(A) (A1) terms of M, *, which is easy to compute due to its banded
wT o/l 6A b/ structure. We find
Here, M, is a banded square matrix of Sik§2L + 1) with WM, *A—b
lower bandwidthN(n,+2) and upper bandwidtN(n,+1) SA= W,

[with n, an integer such that the velocity is= 1/(n,dt)].
The replacement of the equation for the distinguished(6ite
V3/4) is necessary to ensure thatl is not singular. The sU= My (A= (5A)V).

length N(2L +1) vectorV contains the derivatives of the

equations of motion with respect foand the vectokV con-  Hence, our entire system can be solved with no more effort
tains the equation of motion for the distinguished éithich ~ than would be required for a fully banded problem.
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